Metamath Proof Explorer


Theorem fowdom

Description: An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion fowdom ( ( 𝐹𝑉𝐹 : 𝑌onto𝑋 ) → 𝑋* 𝑌 )

Proof

Step Hyp Ref Expression
1 elex ( 𝐹𝑉𝐹 ∈ V )
2 foeq1 ( 𝑧 = 𝐹 → ( 𝑧 : 𝑌onto𝑋𝐹 : 𝑌onto𝑋 ) )
3 2 spcegv ( 𝐹 ∈ V → ( 𝐹 : 𝑌onto𝑋 → ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) )
4 3 imp ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌onto𝑋 ) → ∃ 𝑧 𝑧 : 𝑌onto𝑋 )
5 4 olcd ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌onto𝑋 ) → ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) )
6 fof ( 𝐹 : 𝑌onto𝑋𝐹 : 𝑌𝑋 )
7 dmfex ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌𝑋 ) → 𝑌 ∈ V )
8 6 7 sylan2 ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌onto𝑋 ) → 𝑌 ∈ V )
9 brwdom ( 𝑌 ∈ V → ( 𝑋* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) ) )
10 8 9 syl ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌onto𝑋 ) → ( 𝑋* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) ) )
11 5 10 mpbird ( ( 𝐹 ∈ V ∧ 𝐹 : 𝑌onto𝑋 ) → 𝑋* 𝑌 )
12 1 11 sylan ( ( 𝐹𝑉𝐹 : 𝑌onto𝑋 ) → 𝑋* 𝑌 )