Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-4 (Quantified Implication)
19.26-3an
Next ⟩
19.29
Metamath Proof Explorer
Ascii
Unicode
Theorem
19.26-3an
Description:
Theorem
19.26
with triple conjunction.
(Contributed by
NM
, 13-Sep-2011)
Ref
Expression
Assertion
19.26-3an
⊢
∀
x
φ
∧
ψ
∧
χ
↔
∀
x
φ
∧
∀
x
ψ
∧
∀
x
χ
Proof
Step
Hyp
Ref
Expression
1
19.26
⊢
∀
x
φ
∧
ψ
↔
∀
x
φ
∧
∀
x
ψ
2
1
anbi1i
⊢
∀
x
φ
∧
ψ
∧
∀
x
χ
↔
∀
x
φ
∧
∀
x
ψ
∧
∀
x
χ
3
df-3an
⊢
φ
∧
ψ
∧
χ
↔
φ
∧
ψ
∧
χ
4
3
albii
⊢
∀
x
φ
∧
ψ
∧
χ
↔
∀
x
φ
∧
ψ
∧
χ
5
19.26
⊢
∀
x
φ
∧
ψ
∧
χ
↔
∀
x
φ
∧
ψ
∧
∀
x
χ
6
4
5
bitri
⊢
∀
x
φ
∧
ψ
∧
χ
↔
∀
x
φ
∧
ψ
∧
∀
x
χ
7
df-3an
⊢
∀
x
φ
∧
∀
x
ψ
∧
∀
x
χ
↔
∀
x
φ
∧
∀
x
ψ
∧
∀
x
χ
8
2
6
7
3bitr4i
⊢
∀
x
φ
∧
ψ
∧
χ
↔
∀
x
φ
∧
∀
x
ψ
∧
∀
x
χ