Metamath Proof Explorer


Theorem 19.41v

Description: Version of 19.41 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993) Remove dependency on ax-6 . (Revised by Rohan Ridenour, 15-Apr-2022)

Ref Expression
Assertion 19.41v xφψxφψ

Proof

Step Hyp Ref Expression
1 19.40 xφψxφxψ
2 ax5e xψψ
3 2 anim2i xφxψxφψ
4 1 3 syl xφψxφψ
5 pm3.21 ψφφψ
6 5 eximdv ψxφxφψ
7 6 impcom xφψxφψ
8 4 7 impbii xφψxφψ