Metamath Proof Explorer


Theorem 1arithlem2

Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)

Ref Expression
Hypothesis 1arith.1 M=npppCntn
Assertion 1arithlem2 NPMNP=PpCntN

Proof

Step Hyp Ref Expression
1 1arith.1 M=npppCntn
2 1 1arithlem1 NMN=pppCntN
3 2 fveq1d NMNP=pppCntNP
4 oveq1 p=PppCntN=PpCntN
5 eqid pppCntN=pppCntN
6 ovex PpCntNV
7 4 5 6 fvmpt PpppCntNP=PpCntN
8 3 7 sylan9eq NPMNP=PpCntN