Metamath Proof Explorer


Theorem 1cosscnvepresex

Description: Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021)

Ref Expression
Assertion 1cosscnvepresex AVE-1AV

Proof

Step Hyp Ref Expression
1 cnvepresex AVE-1AV
2 cossex E-1AVE-1AV
3 1 2 syl AVE-1AV