Description: Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 1cosscnvepresex | ⊢ ( 𝐴 ∈ 𝑉 → ≀ ( ◡ E ↾ 𝐴 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepresex | ⊢ ( 𝐴 ∈ 𝑉 → ( ◡ E ↾ 𝐴 ) ∈ V ) | |
2 | cossex | ⊢ ( ( ◡ E ↾ 𝐴 ) ∈ V → ≀ ( ◡ E ↾ 𝐴 ) ∈ V ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ≀ ( ◡ E ↾ 𝐴 ) ∈ V ) |