Description: Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1cosscnvepresex | ⊢ ( 𝐴 ∈ 𝑉 → ≀ ( ◡ E ↾ 𝐴 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvepresex | ⊢ ( 𝐴 ∈ 𝑉 → ( ◡ E ↾ 𝐴 ) ∈ V ) | |
| 2 | cossex | ⊢ ( ( ◡ E ↾ 𝐴 ) ∈ V → ≀ ( ◡ E ↾ 𝐴 ) ∈ V ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ≀ ( ◡ E ↾ 𝐴 ) ∈ V ) |