Metamath Proof Explorer


Theorem 1cosscnvepresex

Description: Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021)

Ref Expression
Assertion 1cosscnvepresex ( 𝐴𝑉 → ≀ ( E ↾ 𝐴 ) ∈ V )

Proof

Step Hyp Ref Expression
1 cnvepresex ( 𝐴𝑉 → ( E ↾ 𝐴 ) ∈ V )
2 cossex ( ( E ↾ 𝐴 ) ∈ V → ≀ ( E ↾ 𝐴 ) ∈ V )
3 1 2 syl ( 𝐴𝑉 → ≀ ( E ↾ 𝐴 ) ∈ V )