Metamath Proof Explorer


Theorem 1finon

Description: 1 is a finite ordinal. See 1onn . (Contributed by RP, 27-Sep-2023)

Ref Expression
Assertion 1finon 1𝑜OnFin

Proof

Step Hyp Ref Expression
1 1onn 1𝑜ω
2 onfin2 ω=OnFin
3 1 2 eleqtri 1𝑜OnFin