Metamath Proof Explorer


Theorem 1sdom2ALT

Description: Alternate proof of 1sdom2 , shorter but requiring ax-un . (Contributed by NM, 4-Apr-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 1sdom2ALT 1𝑜2𝑜

Proof

Step Hyp Ref Expression
1 1onn 1𝑜ω
2 php4 1𝑜ω1𝑜suc1𝑜
3 1 2 ax-mp 1𝑜suc1𝑜
4 df-2o 2𝑜=suc1𝑜
5 3 4 breqtrri 1𝑜2𝑜