Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
1sdom2
Next ⟩
sdom1
Metamath Proof Explorer
Ascii
Unicode
Theorem
1sdom2
Description:
Ordinal 1 is strictly dominated by ordinal 2.
(Contributed by
NM
, 4-Apr-2007)
Ref
Expression
Assertion
1sdom2
⊢
1
𝑜
≺
2
𝑜
Proof
Step
Hyp
Ref
Expression
1
1onn
⊢
1
𝑜
∈
ω
2
php4
⊢
1
𝑜
∈
ω
→
1
𝑜
≺
suc
⁡
1
𝑜
3
1
2
ax-mp
⊢
1
𝑜
≺
suc
⁡
1
𝑜
4
df-2o
⊢
2
𝑜
=
suc
⁡
1
𝑜
5
3
4
breqtrri
⊢
1
𝑜
≺
2
𝑜