Metamath Proof Explorer


Theorem sdom1

Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 12-Dec-2024)

Ref Expression
Assertion sdom1 A1𝑜A=

Proof

Step Hyp Ref Expression
1 df1o2 1𝑜=
2 1 breq2i A1𝑜A
3 brdomi Aff:A1-1
4 f1cdmsn f:A1-1AxA=x
5 vex xV
6 5 ensn1 x1𝑜
7 breq1 A=xA1𝑜x1𝑜
8 6 7 mpbiri A=xA1𝑜
9 8 exlimiv xA=xA1𝑜
10 4 9 syl f:A1-1AA1𝑜
11 10 expcom Af:A1-1A1𝑜
12 11 exlimdv Aff:A1-1A1𝑜
13 3 12 syl5 AAA1𝑜
14 2 13 biimtrid AA1𝑜A1𝑜
15 iman A1𝑜A1𝑜¬A1𝑜¬A1𝑜
16 14 15 sylib A¬A1𝑜¬A1𝑜
17 brsdom A1𝑜A1𝑜¬A1𝑜
18 16 17 sylnibr A¬A1𝑜
19 18 necon4ai A1𝑜A=
20 1n0 1𝑜
21 1oex 1𝑜V
22 21 0sdom 1𝑜1𝑜
23 20 22 mpbir 1𝑜
24 breq1 A=A1𝑜1𝑜
25 23 24 mpbiri A=A1𝑜
26 19 25 impbii A1𝑜A=