Metamath Proof Explorer


Theorem sdom1OLD

Description: Obsolete version of sdom1 as of 12-Dec-2024. (Contributed by Stefan O'Rear, 28-Oct-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sdom1OLD A1𝑜A=

Proof

Step Hyp Ref Expression
1 domnsym 1𝑜A¬A1𝑜
2 1 con2i A1𝑜¬1𝑜A
3 0sdom1dom A1𝑜A
4 2 3 sylnibr A1𝑜¬A
5 relsdom Rel
6 5 brrelex1i A1𝑜AV
7 0sdomg AVAA
8 7 necon2bbid AVA=¬A
9 6 8 syl A1𝑜A=¬A
10 4 9 mpbird A1𝑜A=
11 1n0 1𝑜
12 1oex 1𝑜V
13 12 0sdom 1𝑜1𝑜
14 11 13 mpbir 1𝑜
15 breq1 A=A1𝑜1𝑜
16 14 15 mpbiri A=A1𝑜
17 10 16 impbii A1𝑜A=