| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnsym |
|- ( 1o ~<_ A -> -. A ~< 1o ) |
| 2 |
1
|
con2i |
|- ( A ~< 1o -> -. 1o ~<_ A ) |
| 3 |
|
0sdom1dom |
|- ( (/) ~< A <-> 1o ~<_ A ) |
| 4 |
2 3
|
sylnibr |
|- ( A ~< 1o -> -. (/) ~< A ) |
| 5 |
|
relsdom |
|- Rel ~< |
| 6 |
5
|
brrelex1i |
|- ( A ~< 1o -> A e. _V ) |
| 7 |
|
0sdomg |
|- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
| 8 |
7
|
necon2bbid |
|- ( A e. _V -> ( A = (/) <-> -. (/) ~< A ) ) |
| 9 |
6 8
|
syl |
|- ( A ~< 1o -> ( A = (/) <-> -. (/) ~< A ) ) |
| 10 |
4 9
|
mpbird |
|- ( A ~< 1o -> A = (/) ) |
| 11 |
|
1n0 |
|- 1o =/= (/) |
| 12 |
|
1oex |
|- 1o e. _V |
| 13 |
12
|
0sdom |
|- ( (/) ~< 1o <-> 1o =/= (/) ) |
| 14 |
11 13
|
mpbir |
|- (/) ~< 1o |
| 15 |
|
breq1 |
|- ( A = (/) -> ( A ~< 1o <-> (/) ~< 1o ) ) |
| 16 |
14 15
|
mpbiri |
|- ( A = (/) -> A ~< 1o ) |
| 17 |
10 16
|
impbii |
|- ( A ~< 1o <-> A = (/) ) |