Metamath Proof Explorer


Theorem 1stval

Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion 1stval 1stA=domA

Proof

Step Hyp Ref Expression
1 sneq x=Ax=A
2 1 dmeqd x=Adomx=domA
3 2 unieqd x=Adomx=domA
4 df-1st 1st=xVdomx
5 snex AV
6 5 dmex domAV
7 6 uniex domAV
8 3 4 7 fvmpt AV1stA=domA
9 fvprc ¬AV1stA=
10 snprc ¬AVA=
11 10 biimpi ¬AVA=
12 11 dmeqd ¬AVdomA=dom
13 dm0 dom=
14 12 13 eqtrdi ¬AVdomA=
15 14 unieqd ¬AVdomA=
16 uni0 =
17 15 16 eqtrdi ¬AVdomA=
18 9 17 eqtr4d ¬AV1stA=domA
19 8 18 pm2.61i 1stA=domA