Metamath Proof Explorer


Theorem 2atmat0

Description: The meet of two unequal lines (expressed as joins of atoms) is an atom or zero. (Contributed by NM, 2-Dec-2012)

Ref Expression
Hypotheses 2atmatz.j ˙=joinK
2atmatz.m ˙=meetK
2atmatz.z 0˙=0.K
2atmatz.a A=AtomsK
Assertion 2atmat0 KHLPAQARASAP˙QR˙SP˙Q˙R˙SAP˙Q˙R˙S=0˙

Proof

Step Hyp Ref Expression
1 2atmatz.j ˙=joinK
2 2atmatz.m ˙=meetK
3 2atmatz.z 0˙=0.K
4 2atmatz.a A=AtomsK
5 simpl KHLPAQARASAP˙QR˙SKHLPAQA
6 simpr1 KHLPAQARASAP˙QR˙SRA
7 simpr2 KHLPAQARASAP˙QR˙SSA
8 7 orcd KHLPAQARASAP˙QR˙SSAS=0˙
9 simpr3 KHLPAQARASAP˙QR˙SP˙QR˙S
10 1 2 3 4 2at0mat0 KHLPAQARASAS=0˙P˙QR˙SP˙Q˙R˙SAP˙Q˙R˙S=0˙
11 5 6 8 9 10 syl13anc KHLPAQARASAP˙QR˙SP˙Q˙R˙SAP˙Q˙R˙S=0˙