Metamath Proof Explorer


Theorem 2atmat0

Description: The meet of two unequal lines (expressed as joins of atoms) is an atom or zero. (Contributed by NM, 2-Dec-2012)

Ref Expression
Hypotheses 2atmatz.j = ( join ‘ 𝐾 )
2atmatz.m = ( meet ‘ 𝐾 )
2atmatz.z 0 = ( 0. ‘ 𝐾 )
2atmatz.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 2atmat0 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ( 𝑃 𝑄 ) ≠ ( 𝑅 𝑆 ) ) ) → ( ( ( 𝑃 𝑄 ) ( 𝑅 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 𝑄 ) ( 𝑅 𝑆 ) ) = 0 ) )

Proof

Step Hyp Ref Expression
1 2atmatz.j = ( join ‘ 𝐾 )
2 2atmatz.m = ( meet ‘ 𝐾 )
3 2atmatz.z 0 = ( 0. ‘ 𝐾 )
4 2atmatz.a 𝐴 = ( Atoms ‘ 𝐾 )
5 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ( 𝑃 𝑄 ) ≠ ( 𝑅 𝑆 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) )
6 simpr1 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ( 𝑃 𝑄 ) ≠ ( 𝑅 𝑆 ) ) ) → 𝑅𝐴 )
7 simpr2 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ( 𝑃 𝑄 ) ≠ ( 𝑅 𝑆 ) ) ) → 𝑆𝐴 )
8 7 orcd ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ( 𝑃 𝑄 ) ≠ ( 𝑅 𝑆 ) ) ) → ( 𝑆𝐴𝑆 = 0 ) )
9 simpr3 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ( 𝑃 𝑄 ) ≠ ( 𝑅 𝑆 ) ) ) → ( 𝑃 𝑄 ) ≠ ( 𝑅 𝑆 ) )
10 1 2 3 4 2at0mat0 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ( 𝑆𝐴𝑆 = 0 ) ∧ ( 𝑃 𝑄 ) ≠ ( 𝑅 𝑆 ) ) ) → ( ( ( 𝑃 𝑄 ) ( 𝑅 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 𝑄 ) ( 𝑅 𝑆 ) ) = 0 ) )
11 5 6 8 9 10 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ( 𝑃 𝑄 ) ≠ ( 𝑅 𝑆 ) ) ) → ( ( ( 𝑃 𝑄 ) ( 𝑅 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 𝑄 ) ( 𝑅 𝑆 ) ) = 0 ) )