Step |
Hyp |
Ref |
Expression |
1 |
|
2atmatz.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
2atmatz.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
2atmatz.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
2atmatz.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
6 |
|
simplr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 ∈ 𝐴 ) → 𝑅 ∈ 𝐴 ) |
7 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 ∈ 𝐴 ) → 𝑆 ∈ 𝐴 ) |
8 |
|
simplr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) |
9 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → 𝐾 ∈ HL ) |
10 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → 𝐾 ∈ OL ) |
12 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → 𝑅 ∈ 𝐴 ) |
13 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → 𝑆 ∈ 𝐴 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
15 |
14 1 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
9 12 13 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → 𝑄 ∈ 𝐴 ) |
18 |
14 2 3 4
|
meetat2 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ 𝐴 ) → ( ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) ∈ 𝐴 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) = 0 ) ) |
19 |
11 16 17 18
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) ∈ 𝐴 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) = 0 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) ∈ 𝐴 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) = 0 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑄 ) ) |
22 |
1 4
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
23 |
9 17 22
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
24 |
21 23
|
sylan9eqr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑃 ∨ 𝑄 ) = 𝑄 ) |
25 |
24
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = ( 𝑄 ∧ ( 𝑅 ∨ 𝑆 ) ) ) |
26 |
9
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → 𝐾 ∈ Lat ) |
27 |
14 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
28 |
17 27
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
29 |
14 2
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∧ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) ) |
30 |
26 28 16 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( 𝑄 ∧ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) ) |
31 |
30
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑄 ∧ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) ) |
32 |
25 31
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) ) |
33 |
32
|
eleq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ↔ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) ∈ 𝐴 ) ) |
34 |
32
|
eqeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ↔ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) = 0 ) ) |
35 |
33 34
|
orbi12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ↔ ( ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) ∈ 𝐴 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑄 ) = 0 ) ) ) |
36 |
20 35
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 = 𝑄 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ) |
37 |
14 1 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
39 |
14 2 3 4
|
meetat2 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ 𝐴 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ) = 0 ) ) |
40 |
11 38 13 39
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ) = 0 ) ) |
41 |
40
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑅 = 𝑆 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ) = 0 ) ) |
42 |
|
oveq1 |
⊢ ( 𝑅 = 𝑆 → ( 𝑅 ∨ 𝑆 ) = ( 𝑆 ∨ 𝑆 ) ) |
43 |
1 4
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑆 ) = 𝑆 ) |
44 |
9 13 43
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( 𝑆 ∨ 𝑆 ) = 𝑆 ) |
45 |
42 44
|
sylan9eqr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑅 = 𝑆 ) → ( 𝑅 ∨ 𝑆 ) = 𝑆 ) |
46 |
45
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑅 = 𝑆 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ) ) |
47 |
46
|
eleq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑅 = 𝑆 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ↔ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ) ∈ 𝐴 ) ) |
48 |
46
|
eqeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑅 = 𝑆 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ↔ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ) = 0 ) ) |
49 |
47 48
|
orbi12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑅 = 𝑆 ) → ( ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ↔ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ) = 0 ) ) ) |
50 |
41 49
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑅 = 𝑆 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ) |
51 |
50
|
adantlr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑅 = 𝑆 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ) |
52 |
|
df-ne |
⊢ ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ↔ ¬ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) |
53 |
|
simpll1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → 𝐾 ∈ HL ) |
54 |
|
simpll2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → 𝑃 ∈ 𝐴 ) |
55 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → 𝑄 ∈ 𝐴 ) |
56 |
|
simpr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → 𝑃 ≠ 𝑄 ) |
57 |
|
eqid |
⊢ ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 ) |
58 |
1 4 57
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( LLines ‘ 𝐾 ) ) |
59 |
53 54 55 56 58
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( LLines ‘ 𝐾 ) ) |
60 |
|
simplr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → 𝑅 ∈ 𝐴 ) |
61 |
|
simplr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → 𝑆 ∈ 𝐴 ) |
62 |
|
simpr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → 𝑅 ≠ 𝑆 ) |
63 |
1 4 57
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑅 ≠ 𝑆 ) → ( 𝑅 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ) |
64 |
53 60 61 62 63
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → ( 𝑅 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ) |
65 |
|
simplr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) |
66 |
|
simpr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) |
67 |
2 3 4 57
|
2llnmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( LLines ‘ 𝐾 ) ∧ ( 𝑅 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ) |
68 |
53 59 64 65 66 67
|
syl32anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ) |
69 |
68
|
3exp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( 𝑃 ≠ 𝑄 → ( 𝑅 ≠ 𝑆 → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ) ) ) ) |
70 |
69
|
imp31 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ≠ 0 → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ) ) |
71 |
52 70
|
syl5bir |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) → ( ¬ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ) ) |
72 |
71
|
orrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ) ) |
73 |
72
|
orcomd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ) |
74 |
51 73
|
pm2.61dane |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑃 ≠ 𝑄 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ) |
75 |
36 74
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ) |
76 |
5 6 7 8 75
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 ∈ 𝐴 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ) |
77 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → 𝐾 ∈ HL ) |
78 |
77 10
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → 𝐾 ∈ OL ) |
79 |
37
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
80 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → 𝑅 ∈ 𝐴 ) |
81 |
14 2 3 4
|
meetat2 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ 𝐴 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ) = 0 ) ) |
82 |
78 79 80 81
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ) = 0 ) ) |
83 |
82
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 = 0 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ) = 0 ) ) |
84 |
|
oveq2 |
⊢ ( 𝑆 = 0 → ( 𝑅 ∨ 𝑆 ) = ( 𝑅 ∨ 0 ) ) |
85 |
14 4
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
86 |
80 85
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
87 |
14 1 3
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑅 ∨ 0 ) = 𝑅 ) |
88 |
78 86 87
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( 𝑅 ∨ 0 ) = 𝑅 ) |
89 |
84 88
|
sylan9eqr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 = 0 ) → ( 𝑅 ∨ 𝑆 ) = 𝑅 ) |
90 |
89
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 = 0 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ) ) |
91 |
90
|
eleq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 = 0 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ↔ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ) ∈ 𝐴 ) ) |
92 |
90
|
eqeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 = 0 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ↔ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ) = 0 ) ) |
93 |
91 92
|
orbi12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 = 0 ) → ( ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ↔ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ) = 0 ) ) ) |
94 |
83 93
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) ∧ 𝑆 = 0 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ) |
95 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ) |
96 |
76 94 95
|
mpjaodan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ ( 𝑃 ∨ 𝑄 ) ≠ ( 𝑅 ∨ 𝑆 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑆 ) ) = 0 ) ) |