Metamath Proof Explorer


Theorem 2ex2rexrot

Description: Rotate two existential quantifiers and two restricted existential quantifiers. (Contributed by AV, 9-Nov-2023)

Ref Expression
Assertion 2ex2rexrot xyzAwBφzAwBxyφ

Proof

Step Hyp Ref Expression
1 rexcom4 wBxyφxwByφ
2 1 rexbii zAwBxyφzAxwByφ
3 rexcom4 zAxwByφxzAwByφ
4 rexcom4 wByφywBφ
5 4 rexbii zAwByφzAywBφ
6 rexcom4 zAywBφyzAwBφ
7 5 6 bitri zAwByφyzAwBφ
8 7 exbii xzAwByφxyzAwBφ
9 2 3 8 3bitrri xyzAwBφzAwBxyφ