Metamath Proof Explorer


Theorem 2exanali

Description: Theorem *11.521 in WhiteheadRussell p. 164. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2exanali ¬xyφ¬ψxyφψ

Proof

Step Hyp Ref Expression
1 2nalexn ¬xyφψxy¬φψ
2 1 con1bii ¬xy¬φψxyφψ
3 annim φ¬ψ¬φψ
4 3 2exbii xyφ¬ψxy¬φψ
5 2 4 xchnxbir ¬xyφ¬ψxyφψ