Metamath Proof Explorer


Theorem 2exbidv

Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995)

Ref Expression
Hypothesis 2albidv.1 φψχ
Assertion 2exbidv φxyψxyχ

Proof

Step Hyp Ref Expression
1 2albidv.1 φψχ
2 1 exbidv φyψyχ
3 2 exbidv φxyψxyχ