Metamath Proof Explorer


Theorem 2llnne2N

Description: Condition implying that two intersecting lines are different. (Contributed by NM, 13-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2lnne.l ˙=K
2lnne.j ˙=joinK
2lnne.a A=AtomsK
Assertion 2llnne2N KHLPARA¬P˙R˙QR˙PR˙Q

Proof

Step Hyp Ref Expression
1 2lnne.l ˙=K
2 2lnne.j ˙=joinK
3 2lnne.a A=AtomsK
4 simpl KHLPARAKHL
5 simprr KHLPARARA
6 simprl KHLPARAPA
7 1 2 3 hlatlej2 KHLRAPAP˙R˙P
8 4 5 6 7 syl3anc KHLPARAP˙R˙P
9 breq2 R˙P=R˙QP˙R˙PP˙R˙Q
10 8 9 syl5ibcom KHLPARAR˙P=R˙QP˙R˙Q
11 10 necon3bd KHLPARA¬P˙R˙QR˙PR˙Q
12 11 3impia KHLPARA¬P˙R˙QR˙PR˙Q