Metamath Proof Explorer


Theorem 2lt6

Description: 2 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 2lt6 2<6

Proof

Step Hyp Ref Expression
1 2lt3 2<3
2 3lt6 3<6
3 2re 2
4 3re 3
5 6re 6
6 3 4 5 lttri 2<33<62<6
7 1 2 6 mp2an 2<6