Metamath Proof Explorer


Theorem 2moexv

Description: Double quantification with "at most one". (Contributed by NM, 3-Dec-2001)

Ref Expression
Assertion 2moexv *xyφy*xφ

Proof

Step Hyp Ref Expression
1 nfe1 yyφ
2 1 nfmov y*xyφ
3 19.8a φyφ
4 3 moimi *xyφ*xφ
5 2 4 alrimi *xyφy*xφ