Metamath Proof Explorer


Theorem 2ndf2

Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses 1stfval.t T = C × c D
1stfval.b B = Base T
1stfval.h H = Hom T
1stfval.c φ C Cat
1stfval.d φ D Cat
2ndfval.p Q = C 2 nd F D
2ndf1.p φ R B
2ndf2.p φ S B
Assertion 2ndf2 φ R 2 nd Q S = 2 nd R H S

Proof

Step Hyp Ref Expression
1 1stfval.t T = C × c D
2 1stfval.b B = Base T
3 1stfval.h H = Hom T
4 1stfval.c φ C Cat
5 1stfval.d φ D Cat
6 2ndfval.p Q = C 2 nd F D
7 2ndf1.p φ R B
8 2ndf2.p φ S B
9 1 2 3 4 5 6 2ndfval φ Q = 2 nd B x B , y B 2 nd x H y
10 fo2nd 2 nd : V onto V
11 fofun 2 nd : V onto V Fun 2 nd
12 10 11 ax-mp Fun 2 nd
13 2 fvexi B V
14 resfunexg Fun 2 nd B V 2 nd B V
15 12 13 14 mp2an 2 nd B V
16 13 13 mpoex x B , y B 2 nd x H y V
17 15 16 op2ndd Q = 2 nd B x B , y B 2 nd x H y 2 nd Q = x B , y B 2 nd x H y
18 9 17 syl φ 2 nd Q = x B , y B 2 nd x H y
19 simprl φ x = R y = S x = R
20 simprr φ x = R y = S y = S
21 19 20 oveq12d φ x = R y = S x H y = R H S
22 21 reseq2d φ x = R y = S 2 nd x H y = 2 nd R H S
23 ovex R H S V
24 resfunexg Fun 2 nd R H S V 2 nd R H S V
25 12 23 24 mp2an 2 nd R H S V
26 25 a1i φ 2 nd R H S V
27 18 22 7 8 26 ovmpod φ R 2 nd Q S = 2 nd R H S