Metamath Proof Explorer


Theorem 2nexaln

Description: Theorem *11.25 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2nexaln ¬xyφxy¬φ

Proof

Step Hyp Ref Expression
1 2exnaln xyφ¬xy¬φ
2 1 bicomi ¬xy¬φxyφ
3 2 con1bii ¬xyφxy¬φ