Metamath Proof Explorer


Theorem 2ralbidva

Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019)

Ref Expression
Hypothesis 2ralbidva.1 φxAyBψχ
Assertion 2ralbidva φxAyBψxAyBχ

Proof

Step Hyp Ref Expression
1 2ralbidva.1 φxAyBψχ
2 1 anassrs φxAyBψχ
3 2 ralbidva φxAyBψyBχ
4 3 ralbidva φxAyBψxAyBχ