Metamath Proof Explorer
		
		
		
		Description:  Deduction doubly substituting both sides of a biconditional.
       (Contributed by AV, 30-Jul-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sbbid.1 |  | 
					
						|  |  | sbbid.2 |  | 
					
						|  |  | 2sbbid.1 |  | 
				
					|  | Assertion | 2sbbid |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbbid.1 |  | 
						
							| 2 |  | sbbid.2 |  | 
						
							| 3 |  | 2sbbid.1 |  | 
						
							| 4 | 3 2 | sbbid |  | 
						
							| 5 | 1 4 | sbbid |  |