Metamath Proof Explorer


Theorem 2sqreultb

Description: There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers iff P == 1 (mod 4). (Contributed by AV, 10-Jun-2023) The prime needs not be odd, as observed by WL. (Revised by AV, 25-Jun-2023)

Ref Expression
Hypothesis 2sqreult.1 φ a < b a 2 + b 2 = P
Assertion 2sqreultb P P mod 4 = 1 ∃! a 0 b 0 φ ∃! b 0 a 0 φ

Proof

Step Hyp Ref Expression
1 2sqreult.1 φ a < b a 2 + b 2 = P
2 2sqreultblem P P mod 4 = 1 ∃! a 0 ∃! b 0 a < b a 2 + b 2 = P
3 1 bicomi a < b a 2 + b 2 = P φ
4 3 reubii ∃! b 0 a < b a 2 + b 2 = P ∃! b 0 φ
5 4 reubii ∃! a 0 ∃! b 0 a < b a 2 + b 2 = P ∃! a 0 ∃! b 0 φ
6 5 a1i P ∃! a 0 ∃! b 0 a < b a 2 + b 2 = P ∃! a 0 ∃! b 0 φ
7 1 2sqreulem4 a 0 * b 0 φ
8 2reu1 a 0 * b 0 φ ∃! a 0 ∃! b 0 φ ∃! a 0 b 0 φ ∃! b 0 a 0 φ
9 7 8 mp1i P ∃! a 0 ∃! b 0 φ ∃! a 0 b 0 φ ∃! b 0 a 0 φ
10 2 6 9 3bitrd P P mod 4 = 1 ∃! a 0 b 0 φ ∃! b 0 a 0 φ