Metamath Proof Explorer


Theorem 2sumeq2dv

Description: Equality deduction for double sum. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypothesis 2sumeq2dv.1 φjAkBC=D
Assertion 2sumeq2dv φjAkBC=jAkBD

Proof

Step Hyp Ref Expression
1 2sumeq2dv.1 φjAkBC=D
2 1 3expa φjAkBC=D
3 2 sumeq2dv φjAkBC=kBD
4 3 sumeq2dv φjAkBC=jAkBD