Metamath Proof Explorer


Theorem 2thALT

Description: Alternate proof of 2th . (Contributed by Hongxiu Chen, 29-Jun-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses 2thALT.1 φ
2thALT.2 ψ
Assertion 2thALT φ ψ

Proof

Step Hyp Ref Expression
1 2thALT.1 φ
2 2thALT.2 ψ
3 pm5.1im φ ψ φ ψ
4 1 2 3 mp2 φ ψ