Description: Alternate proof of 2th . (Contributed by Hongxiu Chen, 29-Jun-2025) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2thALT.1 | ⊢ 𝜑 | |
2thALT.2 | ⊢ 𝜓 | ||
Assertion | 2thALT | ⊢ ( 𝜑 ↔ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2thALT.1 | ⊢ 𝜑 | |
2 | 2thALT.2 | ⊢ 𝜓 | |
3 | pm5.1im | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜑 ↔ 𝜓 ) ) ) | |
4 | 1 2 3 | mp2 | ⊢ ( 𝜑 ↔ 𝜓 ) |