Metamath Proof Explorer


Theorem orbi2iALT

Description: Alternate proof of orbi2i . (Contributed by Hongxiu Chen, 29-Jun-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis orbi2iALT.1 ( 𝜑𝜓 )
Assertion orbi2iALT ( ( 𝜒𝜑 ) ↔ ( 𝜒𝜓 ) )

Proof

Step Hyp Ref Expression
1 orbi2iALT.1 ( 𝜑𝜓 )
2 1 a1i ( ¬ 𝜒 → ( 𝜑𝜓 ) )
3 2 pm5.74i ( ( ¬ 𝜒𝜑 ) ↔ ( ¬ 𝜒𝜓 ) )
4 df-or ( ( 𝜒𝜑 ) ↔ ( ¬ 𝜒𝜑 ) )
5 df-or ( ( 𝜒𝜓 ) ↔ ( ¬ 𝜒𝜓 ) )
6 3 4 5 3bitr4i ( ( 𝜒𝜑 ) ↔ ( 𝜒𝜓 ) )