Metamath Proof Explorer


Theorem orbi2iALT

Description: Alternate proof of orbi2i . (Contributed by Hongxiu Chen, 29-Jun-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis orbi2iALT.1
|- ( ph <-> ps )
Assertion orbi2iALT
|- ( ( ch \/ ph ) <-> ( ch \/ ps ) )

Proof

Step Hyp Ref Expression
1 orbi2iALT.1
 |-  ( ph <-> ps )
2 1 a1i
 |-  ( -. ch -> ( ph <-> ps ) )
3 2 pm5.74i
 |-  ( ( -. ch -> ph ) <-> ( -. ch -> ps ) )
4 df-or
 |-  ( ( ch \/ ph ) <-> ( -. ch -> ph ) )
5 df-or
 |-  ( ( ch \/ ps ) <-> ( -. ch -> ps ) )
6 3 4 5 3bitr4i
 |-  ( ( ch \/ ph ) <-> ( ch \/ ps ) )