Metamath Proof Explorer


Theorem 2thALT

Description: Alternate proof of 2th . (Contributed by Hongxiu Chen, 29-Jun-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses 2thALT.1
|- ph
2thALT.2
|- ps
Assertion 2thALT
|- ( ph <-> ps )

Proof

Step Hyp Ref Expression
1 2thALT.1
 |-  ph
2 2thALT.2
 |-  ps
3 pm5.1im
 |-  ( ph -> ( ps -> ( ph <-> ps ) ) )
4 1 2 3 mp2
 |-  ( ph <-> ps )