Metamath Proof Explorer


Theorem 2wlkdlem2

Description: Lemma 2 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
Assertion 2wlkdlem2 0..^F=01

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2 fveq2i F=⟨“JK”⟩
4 s2len ⟨“JK”⟩=2
5 3 4 eqtri F=2
6 5 oveq2i 0..^F=0..^2
7 fzo0to2pr 0..^2=01
8 6 7 eqtri 0..^F=01