Metamath Proof Explorer
Description: Lemma 2 for 2wlkd . (Contributed by AV, 14-Feb-2021)
|
|
Ref |
Expression |
|
Hypotheses |
2wlkd.p |
|
|
|
2wlkd.f |
|
|
Assertion |
2wlkdlem2 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2wlkd.p |
|
| 2 |
|
2wlkd.f |
|
| 3 |
2
|
fveq2i |
|
| 4 |
|
s2len |
|
| 5 |
3 4
|
eqtri |
|
| 6 |
5
|
oveq2i |
|
| 7 |
|
fzo0to2pr |
|
| 8 |
6 7
|
eqtri |
|