Metamath Proof Explorer


Theorem 2wlkdlem3

Description: Lemma 3 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
2wlkd.s φAVBVCV
Assertion 2wlkdlem3 φP0=AP1=BP2=C

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2wlkd.s φAVBVCV
4 1 fveq1i P0=⟨“ABC”⟩0
5 s3fv0 AV⟨“ABC”⟩0=A
6 4 5 eqtrid AVP0=A
7 1 fveq1i P1=⟨“ABC”⟩1
8 s3fv1 BV⟨“ABC”⟩1=B
9 7 8 eqtrid BVP1=B
10 1 fveq1i P2=⟨“ABC”⟩2
11 s3fv2 CV⟨“ABC”⟩2=C
12 10 11 eqtrid CVP2=C
13 6 9 12 3anim123i AVBVCVP0=AP1=BP2=C
14 3 13 syl φP0=AP1=BP2=C