Metamath Proof Explorer


Theorem 3an4ancom24

Description: Commutative law for a conjunction with a triple conjunction: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022)

Ref Expression
Assertion 3an4ancom24 φ ψ χ θ φ θ χ ψ

Proof

Step Hyp Ref Expression
1 an4com24 φ ψ χ θ φ θ χ ψ
2 3an4anass φ ψ χ θ φ ψ χ θ
3 3an4anass φ θ χ ψ φ θ χ ψ
4 1 2 3 3bitr4i φ ψ χ θ φ θ χ ψ