Metamath Proof Explorer


Theorem 3an4ancom24

Description: Commutative law for a conjunction with a triple conjunction: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022)

Ref Expression
Assertion 3an4ancom24 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) ↔ ( ( 𝜑𝜃𝜒 ) ∧ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 an4com24 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) ↔ ( ( 𝜑𝜃 ) ∧ ( 𝜒𝜓 ) ) )
2 3an4anass ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) )
3 3an4anass ( ( ( 𝜑𝜃𝜒 ) ∧ 𝜓 ) ↔ ( ( 𝜑𝜃 ) ∧ ( 𝜒𝜓 ) ) )
4 1 2 3 3bitr4i ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) ↔ ( ( 𝜑𝜃𝜒 ) ∧ 𝜓 ) )