Metamath Proof Explorer


Theorem an4com24

Description: Rearrangement of 4 conjuncts: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022)

Ref Expression
Assertion an4com24 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) ↔ ( ( 𝜑𝜃 ) ∧ ( 𝜒𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 an43 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) ↔ ( ( 𝜑𝜃 ) ∧ ( 𝜓𝜒 ) ) )
2 ancom ( ( 𝜓𝜒 ) ↔ ( 𝜒𝜓 ) )
3 2 anbi2i ( ( ( 𝜑𝜃 ) ∧ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜃 ) ∧ ( 𝜒𝜓 ) ) )
4 1 3 bitri ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) ↔ ( ( 𝜑𝜃 ) ∧ ( 𝜒𝜓 ) ) )