Metamath Proof Explorer


Theorem 3brtr4g

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997)

Ref Expression
Hypotheses 3brtr4g.1 φARB
3brtr4g.2 C=A
3brtr4g.3 D=B
Assertion 3brtr4g φCRD

Proof

Step Hyp Ref Expression
1 3brtr4g.1 φARB
2 3brtr4g.2 C=A
3 3brtr4g.3 D=B
4 2 3 breq12i CRDARB
5 1 4 sylibr φCRD