Metamath Proof Explorer


Theorem 3com12d

Description: Commutation in consequent. Swap 1st and 2nd. (Contributed by Jeff Hankins, 17-Nov-2009)

Ref Expression
Hypothesis 3com12d.1 φ ψ χ θ
Assertion 3com12d φ χ ψ θ

Proof

Step Hyp Ref Expression
1 3com12d.1 φ ψ χ θ
2 id χ ψ θ χ ψ θ
3 2 3com12 ψ χ θ χ ψ θ
4 1 3 syl φ χ ψ θ