Metamath Proof Explorer


Theorem 3eqtrrd

Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006) (Proof shortened by Andrew Salmon, 25-May-2011)

Ref Expression
Hypotheses 3eqtrd.1 φA=B
3eqtrd.2 φB=C
3eqtrd.3 φC=D
Assertion 3eqtrrd φD=A

Proof

Step Hyp Ref Expression
1 3eqtrd.1 φA=B
2 3eqtrd.2 φB=C
3 3eqtrd.3 φC=D
4 1 2 eqtrd φA=C
5 4 3 eqtr2d φD=A