Metamath Proof Explorer


Theorem 3exdistr

Description: Distribution of existential quantifiers in a triple conjunction. (Contributed by NM, 9-Mar-1995) (Proof shortened by Andrew Salmon, 25-May-2011)

Ref Expression
Assertion 3exdistr xyzφψχxφyψzχ

Proof

Step Hyp Ref Expression
1 3anass φψχφψχ
2 1 2exbii yzφψχyzφψχ
3 19.42vv yzφψχφyzψχ
4 exdistr yzψχyψzχ
5 4 anbi2i φyzψχφyψzχ
6 2 3 5 3bitri yzφψχφyψzχ
7 6 exbii xyzφψχxφyψzχ