Description: Distribution of existential quantifiers in a triple conjunction. (Contributed by NM, 9-Mar-1995) (Proof shortened by Andrew Salmon, 25-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3exdistr | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 𝜒 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anass | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 2 | 1 | 2exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | 
| 3 | 19.42vv | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝜓 ∧ 𝜒 ) ) ) | |
| 4 | exdistr | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝜓 ∧ 𝜒 ) ↔ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 𝜒 ) ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 𝜒 ) ) ) | 
| 6 | 2 3 5 | 3bitri | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 𝜒 ) ) ) | 
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 𝜒 ) ) ) |