Metamath Proof Explorer


Theorem 3finon

Description: 3 is a finite ordinal. See 1onn . (Contributed by RP, 27-Sep-2023)

Ref Expression
Assertion 3finon 3𝑜OnFin

Proof

Step Hyp Ref Expression
1 3onn 3𝑜ω
2 onfin2 ω=OnFin
3 1 2 eleqtri 3𝑜OnFin