Metamath Proof Explorer


Theorem 3imp3i2an

Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 13-Apr-2022)

Ref Expression
Hypotheses 3imp3i2an.1 φψχθ
3imp3i2an.2 φχτ
3imp3i2an.3 θτη
Assertion 3imp3i2an φψχη

Proof

Step Hyp Ref Expression
1 3imp3i2an.1 φψχθ
2 3imp3i2an.2 φχτ
3 3imp3i2an.3 θτη
4 2 3adant2 φψχτ
5 1 4 3 syl2anc φψχη