Metamath Proof Explorer


Theorem 3impdirp1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. Commuted version of 3impdir . (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis 3impdirp1.1 χ ψ φ ψ θ
Assertion 3impdirp1 φ χ ψ θ

Proof

Step Hyp Ref Expression
1 3impdirp1.1 χ ψ φ ψ θ
2 ancom χ ψ φ ψ φ ψ χ ψ
3 2 1 sylbir φ ψ χ ψ θ
4 3 3impdir φ χ ψ θ