Metamath Proof Explorer


Theorem 3jcadALT

Description: Alternate proof of 3jcad . (Contributed by Hongxiu Chen, 29-Jun-2025) (Proof modification is discouraged.) Use 3jcad instead. (New usage is discouraged.)

Ref Expression
Hypotheses 3jcadALT.1 φ ψ χ
3jcadALT.2 φ ψ θ
3jcadALT.3 φ ψ τ
Assertion 3jcadALT φ ψ χ θ τ

Proof

Step Hyp Ref Expression
1 3jcadALT.1 φ ψ χ
2 3jcadALT.2 φ ψ θ
3 3jcadALT.3 φ ψ τ
4 1 2 jcad φ ψ χ θ
5 4 3 jcad φ ψ χ θ τ
6 df-3an χ θ τ χ θ τ
7 5 6 imbitrrdi φ ψ χ θ τ