Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Hongxiu Chen
3jcadALT
Metamath Proof Explorer
Description: Alternate proof of 3jcad . (Contributed by Hongxiu Chen , 29-Jun-2025) (Proof modification is discouraged.) Use 3jcad instead.
(New usage is discouraged.)
Ref
Expression
Hypotheses
3jcadALT.1
⊢ φ → ψ → χ
3jcadALT.2
⊢ φ → ψ → θ
3jcadALT.3
⊢ φ → ψ → τ
Assertion
3jcadALT
⊢ φ → ψ → χ ∧ θ ∧ τ
Proof
Step
Hyp
Ref
Expression
1
3jcadALT.1
⊢ φ → ψ → χ
2
3jcadALT.2
⊢ φ → ψ → θ
3
3jcadALT.3
⊢ φ → ψ → τ
4
1 2
jcad
⊢ φ → ψ → χ ∧ θ
5
4 3
jcad
⊢ φ → ψ → χ ∧ θ ∧ τ
6
df-3an
⊢ χ ∧ θ ∧ τ ↔ χ ∧ θ ∧ τ
7
5 6
imbitrrdi
⊢ φ → ψ → χ ∧ θ ∧ τ