Metamath Proof Explorer


Theorem 3jcadALT

Description: Alternate proof of 3jcad . (Contributed by Hongxiu Chen, 29-Jun-2025) (Proof modification is discouraged.) Use 3jcad instead. (New usage is discouraged.)

Ref Expression
Hypotheses 3jcadALT.1
|- ( ph -> ( ps -> ch ) )
3jcadALT.2
|- ( ph -> ( ps -> th ) )
3jcadALT.3
|- ( ph -> ( ps -> ta ) )
Assertion 3jcadALT
|- ( ph -> ( ps -> ( ch /\ th /\ ta ) ) )

Proof

Step Hyp Ref Expression
1 3jcadALT.1
 |-  ( ph -> ( ps -> ch ) )
2 3jcadALT.2
 |-  ( ph -> ( ps -> th ) )
3 3jcadALT.3
 |-  ( ph -> ( ps -> ta ) )
4 1 2 jcad
 |-  ( ph -> ( ps -> ( ch /\ th ) ) )
5 4 3 jcad
 |-  ( ph -> ( ps -> ( ( ch /\ th ) /\ ta ) ) )
6 df-3an
 |-  ( ( ch /\ th /\ ta ) <-> ( ( ch /\ th ) /\ ta ) )
7 5 6 imbitrrdi
 |-  ( ph -> ( ps -> ( ch /\ th /\ ta ) ) )