Description: Alternate proof of 3jcad . (Contributed by Hongxiu Chen, 29-Jun-2025) (Proof modification is discouraged.) Use 3jcad instead. (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3jcadALT.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
3jcadALT.2 | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) | ||
3jcadALT.3 | ⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) | ||
Assertion | 3jcadALT | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jcadALT.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
2 | 3jcadALT.2 | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) | |
3 | 3jcadALT.3 | ⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) | |
4 | 1 2 | jcad | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ∧ 𝜃 ) ) ) |
5 | 4 3 | jcad | ⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜏 ) ) ) |
6 | df-3an | ⊢ ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ↔ ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜏 ) ) | |
7 | 5 6 | imbitrrdi | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |