Metamath Proof Explorer


Theorem 3jcadALT

Description: Alternate proof of 3jcad . (Contributed by Hongxiu Chen, 29-Jun-2025) (Proof modification is discouraged.) Use 3jcad instead. (New usage is discouraged.)

Ref Expression
Hypotheses 3jcadALT.1 ( 𝜑 → ( 𝜓𝜒 ) )
3jcadALT.2 ( 𝜑 → ( 𝜓𝜃 ) )
3jcadALT.3 ( 𝜑 → ( 𝜓𝜏 ) )
Assertion 3jcadALT ( 𝜑 → ( 𝜓 → ( 𝜒𝜃𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 3jcadALT.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 3jcadALT.2 ( 𝜑 → ( 𝜓𝜃 ) )
3 3jcadALT.3 ( 𝜑 → ( 𝜓𝜏 ) )
4 1 2 jcad ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
5 4 3 jcad ( 𝜑 → ( 𝜓 → ( ( 𝜒𝜃 ) ∧ 𝜏 ) ) )
6 df-3an ( ( 𝜒𝜃𝜏 ) ↔ ( ( 𝜒𝜃 ) ∧ 𝜏 ) )
7 5 6 imbitrrdi ( 𝜑 → ( 𝜓 → ( 𝜒𝜃𝜏 ) ) )