Metamath Proof Explorer


Theorem 3netr4g

Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses 3netr4g.1 φAB
3netr4g.2 C=A
3netr4g.3 D=B
Assertion 3netr4g φCD

Proof

Step Hyp Ref Expression
1 3netr4g.1 φAB
2 3netr4g.2 C=A
3 3netr4g.3 D=B
4 2 3 neeq12i CDAB
5 1 4 sylibr φCD